
Reconnection and scale-free avalanching in a driven

current-sheet model

Alex J. Klimas,1 Vadim M. Uritsky,2 Dimitris Vassiliadis,3 and Daniel N. Baker4

Received 12 May 2003; revised 18 August 2003; accepted 2 September 2003; published 27 February 2004.

[1] Uritsky et al. [2002], through a study of Polar UVI auroral image sequences, have
produced a set of scale-free probability distributions for several characteristic properties of
the evolving bright emission regions in the nightside auroral oval. These distributions
almost certainly reflect the dynamics of the plasma sheet. A scale-free avalanching process
involving reconnection and/or current diversion over an exceptionally broad range of
spatiotemporal scales is implied. The most straightforward, and at present sole,
explanation for this behavior is that the plasma sheet dynamics is in the neighborhood of
self-organized criticality (SOC). However, the auroral images provide only an indirect
measure of the plasma sheet dynamics. Confirmation of this state in the plasma sheet
would require multispatiotemporal-scale in situ plasma sheet studies that, with the advent
of multispacecraft missions, are now possible. To suggest specific tests for such studies, a
numerical current-sheet model has been constructed and analyzed to develop the
properties and requirements of SOC in a plasma physical setting. The model incorporates
the anomalous resistivity of a current-driven kinetic instability into a two-dimensional
resistive MHD system. The disparate scales of these two systems enable multiscale
behavior in the intervening range. Several novel features in the model’s behavior are
enabled through the assumption of hysteresis in the kinetic instability threshold. Under
steady loading of plasma containing a reversed magnetic field topology, an irregular
loading-unloading cycle is established in which unloading is due primarily to annihilation
at the field reversal. Following a loading interval during which the current-sheet
supporting the field reversal thins and intensifies, an unloading event originates at a
localized reconnection site that then becomes the source of waves of unstable current
sheets. These current sheets propagate away from the reconnection site, each leaving a trail
of anomalous resistivity behind. An expanding cascade of field line merging results. Some
statistical properties of this cascade are examined. It is shown that the diffusive
contribution to the Poynting flux in these cascades occurs in bursts, whose duration,
integrated size, and total energy content exhibit scale-free power law probability
distributions over large ranges of scales. Although not conclusive, these distributions do
provide strong evidence that the model has evolved into SOC. INDEX TERMS: 2764
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1. Introduction

[2] The magnetospheric substorm is a complicated, mul-
tifaceted phenomenon. At its core, however, there is one
fundamental process, the loading and unloading of magnetic
flux and energy [Baker et al., 1999]. A southward turning of
the interplanetary magnetic field leads to loading in the
magnetotail. Unloading takes place when a global plasma
sheet instability releases the stresses that this loading
produces. This process may be shortened by external dis-
turbances in the solar wind (external triggering) [Lyons et
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al., 1997; Blanchard et al., 2000; Lyons, 2000; Russel,
2000], or it may proceed to completion (internal triggering).
In either case, the plasma sheet dynamics controls the
transition to global instability at the substorm onset time.
Clearly, then, understanding the plasma sheet dynamics is
central to understanding the substorm cycle.
[3] It is known that in a largely quiescent background the

plasma sheet contains fast flow bursts that are grouped
together into 10–20 min events called bursty bulk flows
(BBFs) [Baumjohann et al., 1990; Angelopoulos et al.,
1992, 1994, 1996, 1999a; Zesta et al., 2000; Nakamura et
al., 2001a, 2001b]. These BBFs are thought to be generated
by reconnection in the plasma sheet that is localized to
spatial scales of no more than 1–2 RE; plasmoid releases
have been shown to be associated with these fast flows
[Ieda et al., 2001]. BBFs have been observed over a large
portion of the plasma sheet and, although correlated with
substorm activity, they can be detected at any time in the
substorm cycle. The fast flows in the plasma sheet act like
jets in a fluid, producing strong eddy turbulence. Long-time
statistical analysis yields an eddy scale size ’1.6 RE and an
eddy turnover time ’2.3 min while fluctuations in the
magnetic field are found comparable in magnitude to its
mean value [Borovsky et al., 1997]. However, it also has
been shown that the turbulence is intermittent at large
spatial scales (’5 RE) [Angelopoulos et al., 1999b] and at
very small scales, perhaps as small as ion kinetic scales
[Vörös et al., 2003]. Substorm onset studies that do not
consider these known plasma sheet properties cannot be
considered reliable.
[4] It has been shown that on large spatiotemporal scales

the magnetosphere behaves as a low-dimensional dynamical
system [Sharma, 1995; Vassiliadis et al., 1995; Klimas et
al., 1996]. The global substorm cycle is a manifestation of
this dynamic. The role of the plasma sheet in the substorm
cycle must be understood in terms of the interaction of its
broadband, multiscale, high-dimensional turbulence with
the low-dimensional global magnetosphere.
[5] Chang [1992a, 1992b, 1998, 1999] and Chang and

Wu [2002] have shown that a system that is in the state
known as self-organized criticality (SOC) [Bak et al.,
1987, 1988; Bak, 1997; Jensen, 1998] can exhibit appar-
ent low-dimensional global dynamics that is, nevertheless,
structured about a high-dimensional internal avalanching
process. Evidence in support of SOC has accumulated
since Chang’s suggestion that the dynamics of the
magnetotail can be understood within this framework.
Uritsky et al. [2002], using an extension of a method
introduced by Lui et al. [2000], have produced the most
convincing of this evidence through a detailed study of
two long sequences of Polar UVI images. A threshold in
the image intensity was applied and then the spatiotem-
poral evolution of bright regions in the nightside aurora
that reached above this threshold was studied. These
bright regions were treated exactly as though they were
avalanches in a numerical running-sandpile experiment
[Becker et al., 1995] and were thus shown to exhibit
the characteristic behavior of systems in SOC. No other
explanation for these results is available at present.
However, the location of this presumed SOC dynamics
and the physical mechanism responsible for it is open to
speculation.

[6] Systems in SOC are spatially extended and subject to
loading and unloading of a quantity that is otherwise
conserved. The transport of the conserved quantity through
the system is controlled by a local threshold instability;
when the instability is excited the conserved quantity moves
toward the region or boundary where unloading takes place.
Under certain conditions, the system may be driven to the
neighborhood of a critical point in its dynamics; the system
self-organizes toward criticality in response to being loaded.
One characteristic of this neighborhood is that the local
threshold instability resides near its excitation threshold
throughout the spatially extended system. There are three
important consequences of this characteristic: (1) the re-
quirement of marginal stability throughout the system may
result in relatively simple global dynamics; (2) the excita-
tion of the local instability at one position may lead to a
cascade of local instabilities, conventionally called an
avalanche, and distributions of avalanche properties may
exhibit no characteristic scales; (3) avalanches of any size,
including system-wide avalanches, may result from small
external perturbations (external triggering) since the entire
system is sensitive to any perturbation.
[7] The system described in the preceding paragraph

suggests the magnetotail as the location for the SOC
dynamics. The conserved quantity would be magnetic flux
or energy, which is transported through the system by the
action of a local instability that leads to localized reconnec-
tion. This suggestion is strengthened by the well-known
relationship of plasma sheet fast flows and localized recon-
nection to auroral brightening. This relationship has been
demonstrated for localized reconnection events isolated in
the midst of otherwise quiet intervals as well as for sub-
storm events. Ieda et al. [2001] have found 24 fast flow
events in their study of GEOTAIL plasma sheet data for
which simultaneous Polar UVI images were available. In
every case, auroral brightening was found associated with
the in situ fast flow. If the inverse relationship holds to a
significant degree, then the indications of SOC dynamics
obtained by Uritsky et al. [2002] through their UVI auroral
image study could be interpreted as a reflection of the
dynamics of the plasma sheet. From this perspective, the
plasma sheet is a scale-free avalanching system whose
dynamics is controlled by a local instability associated with
localized reconnection. Rather than a single global instabil-
ity, substorm onset must be viewed as a cascade of these
local instabilities in strongly turbulent plasma whose char-
acteristic time and length scales are quite small when
compared to the system size [Chang and Wu, 2002; Chang
et al., 2002].
[8] While the one-to-one relationship between plasma

sheet fast flows and auroral brightening is well established,
the inverse relationship is not so definite. To proceed further
toward understanding the dynamics of the plasma sheet, it is
clearly necessary to focus on the plasma sheet itself. The
multispacecraft Cluster II and Magnetospheric Multiscale
(MMS) missions could be particularly well suited for
searching the plasma sheet for possible multiscale spatio-
temporal dynamics. However, it is not clear at this time
exactly what to look for. Much of what is known about SOC
has been learned through studies of various types of
sandpile models, and such models have been used to
describe the magnetotail dynamics [Chapman et al., 1998,
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1999; Watkins et al., 1999; Chapman, 2000]. To understand
the specific details of the plasma sheet behavior that would
be involved if it were indeed in SOC, it is necessary to go
beyond such models.
[9] Lu [1995] has studied a continuum model that exhib-

its some of the behavior of discrete sandpile models when
they are in SOC. Klimas et al. [2000] noted that a variant of
the Lu model could be obtained through a reduction to one
dimension of a resistive MHD current-sheet model in which
the resistance is anomalous and created through the excita-
tion of a current-driven instability This one-dimensional
(1-D) current-sheet model has been shown. [Uritsky et al.,
2001a, 2001b] to evolve naturally into SOC, as it is
understood today through the mean-field theory of
Vespignani and Zapperi [1998]. Klimas et al. also noted
that the reduction to one dimension could be reversed to
produce, starting with the one-dimensional model, a
sequence of ever more realistic plasma physical models of
SOC in the magnetotail. In this paper, we present the first
results from our study of the next model in this sequence, a
two-dimensional driven current-sheet model. The model is
introduced below in section 2 and the manner in which it is
integrated to induce it into a stationary state involving a
loading-unloading cycle is discussed in section 3. The onset
of one of these unloading events in the model is discussed in
detail in section 4. It is shown that the unloading event
originates at a localized reconnection site, which then
becomes the locus of an expanding cascade of field line
merging. This cascade suggests a possible avalanching
mechanism for the plasma sheet. A discussion of some
statistical properties of the cascade follows.
[10] Scale-free distributions (power laws with no peaks or

valleys) of various avalanche properties are characteristic of
systems in SOC. Alone, such distributions do not constitute
a proof that the system is in SOC but, depending on other
relevant factors, they may constitute convincing evidence.
Following the analysis by Klimas et al. [2000] of their one-
dimensional current-sheet model, we have studied the
transport of electromagnetic (predominantly magnetic) en-
ergy in the two-dimensional driven current-sheet model
under consideration here. We have found that the portion
of the Poynting flux that is due to the presence of resistivity
in the MHD plasma exhibits scale-free avalanche distribu-
tions over large ranges of the measured avalanche proper-
ties. The indices that define these power law distributions
are similar to those found by Uritsky et al. [2002] in their
analysis of the UVI auroral image data. These distributions
are the principal result of this paper; they are presented
below in section 5. We consider this result an important step
toward understanding SOC in a plasma physical context and
toward explaining the plasma sheet dynamics of substorm
onset.
[11] Before proceeding further, we wish to emphasize that

we do not consider the present version of the current-sheet
model discussed below to be a realistic model of the plasma
sheet but we do feel that this model is relevant enough to
suggest the steps that must be taken in that direction. The
emphasis in this early stage of this research has been to
understand the requirements for the establishment of SOC
in as relevant a model of an unstable current sheet as
possible. In this paper we present the first results, which
indicate strongly that the present model version does,

indeed, evolve into SOC under certain conditions. We are
unaware of any other current-sheet model that exhibits this
property so clearly.

2. Driven 2-D Current-Sheet Model

[12] An important characteristic of this current-sheet
model is strong coupling between MHD phenomena at
large scales and kinetic phenomena at small scales. This
coupling is incorporated through the interaction of three
components of the model: (1) a two-dimensional resistive
MHD component; (2) a simple equation for the growth and
decay of anomalous resistivity; and (3) an idealized repre-
sentation of a current-driven instability that, through its
excitation and quenching, leads to the consequent growth or
decay of the anomalous resistivity.
[13] All variables in the model are dimensionless. The

relations between dimensionless and dimensional quantities
are given in Appendix A. All parameters in the model are
listed there also, including the values used to obtain the
results discussed below.

2.1. Two-Dimensional Resistive MHD

[14] Taking advantage of the reduction to two dimen-
sions, the MHD component of the model is written for the
vector potential A. A polytropic law with g = 5/3 is used for
the energy equation. The resistivity is written as a diffusion
coefficient D. The symbol � represents the Laplacian
differential operator

@r
@t

þr � ðrVÞ ¼ 0; ð1Þ

@V

@t
þ ðV � rÞV ¼ � 1

4pr
rAð�AÞ � rP

r
; ð2Þ

@A

@t
þ ðV � rÞA ¼ D�A; ð3Þ

and

1

g� 1

� �
@P

@t
þ V � rP

� �
þ g

g� 1

� �
Pðr � VÞ ¼ 1

4p
Dð�AÞ2:

ð4Þ

2.2. Current-Driven Instability

[15] The current density in the MHD system is given by
J = � �A/

ffiffiffiffiffiffi
8p

p
: Following Lu [1995], an idealized current-

driven instability is introduced through

QðjJ jÞ ¼
Dmin jJ j < Jc

Dmax jJ j > bJc

8<
: : ð5Þ

To explain the notation on the right side of equation (5): at
each spatial position, the quantity Q can take one of two
values, Dmax or Dmin � Dmax, depending on the evolution
in time of jJj at that position. If Q = Dmin, it remains at that
value until jJj � Jc, at which time it switches to the value
Dmax. Consequently, Q remains at the value Dmax until jJj 
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bJc with b < 1. When Q = Dmax the current-driven instability
is excited, while when Q = Dmin the instability is quenched.
Thus equation (5) represents the saturation or quenching of
the current-driven instability, depending on the evolution of
the current density at each spatial position and including the
common property [Lu, 1995] that the threshold for
quenching is slightly lower than that for excitation. This
is a critical feature of this model that is necessary for
generating avalanching that is associated with reconnection;
it will be discussed fully below.

2.3. Anomalous Resistivity

[16] The effects of the idealized current-driven instability
are seen in the consequent evolution of the anomalous
resistivity

@Dðz; tÞ
@t

¼ QðjJ jÞ � D

t
: ð6Þ

Solutions of equation (6) asymptote exponentially to the
value of Q with characteristic timescale t. If the current-
driven instability is quenched, then D either remains at the
(small) value Dmin or, if the instability has previously been
excited, it evolves toward Dmin from larger values. If the
current-driven instability is excited then D evolves toward
Dmax � Dmin. Thus equation (6) represents the evolution of
anomalous resistivity, which is assumed due to the growth
or decay of small-scale wave activity following the
excitation or quenching of the current-driven instability.
[17] It should be noted that the discussion ofD andQ in the

preceding paragraphs applies to each spatial position in the
plasma, independent of all other positions. In the numerical
simulations of this model, the evolution of these quantities is
computed at each grid point, independent of all others.

2.4. Discussion

[18] It is generally accepted that the MHD approximation
is an appropriate one for describing the large-scale evolution
of the magnetotail. The resistive MHD component of the
2-D current-sheet model has been adopted for this purpose.
Through the evolution of the MHD plasma, however, small
spatial scales with consequent high current density are
generated. The inclusion of the idealized current-driven
instability in the model is an attempt to partially represent
the kinetic effects that are expected and are beyond the
limitations of the MHD approximation.
[19] Lui et al. [1990, 1991] and Lui [1996] have shown that

a cross-field current instability can be excited in the plasma
sheet when the current sheet is thin; a requirement for
excitation is excess current density. Excitation can occur
over a broad region of the plasma sheet but its consequences
likely depend on distance down the tail. Two possibilities are
discussed: (1) direct diversion of a portion of the cross-tail
current that can trigger the onset of a substorm in a relatively
near-Earth portion of the plasma sheet and (2) the generation
of broadband electromagnetic waves in the vicinity and
above the ion gyrofrequency that can provide the anomalous
resistivity necessary to initiate magnetic reconnection [Lui et
al., 1993; Yoon and Lui, 1993, 1996]. The instability and
resistivity components of the 2-D current-sheet model
under discussion here are idealized representations of this
second possibility. Following the transition of the switch Q

in equation (5) from Dmin to Dmax due to an excess current
density at some location in the simulated plasma, the
exponential growth and saturation of the resistivity D
according to equation (6) models the exponential growth
and saturation of the wave field associated with the cross-
field instability. For the present, all parametric dependencies
in the instability, except for the critical current density, have
been neglected. An important part of making this model
more realistic in the future will be the insertion of these
dependencies.
[20] The ‘‘hysteresis’’ (b < 1) in the Q-switch equation (5)

is essential for the model behavior that will be described
below. The rationale for this feature and its significance in
the model behavior will be discussed below.

3. Simulation Setup and Long-Time Behavior

[21] A system that evolves into SOC is subject to loading
and unloading of a conserved quantity. The loading rate is
either steady or stochastic with a steady average. The
system must be loaded long enough to allow it to establish
a time-averaged equilibrium between loading and unload-
ing. The system achieves this equilibrium by self-organiz-
ing into a spatial configuration that, though dynamic,
remains close to a critical configuration. In this self-
organized state, the system exhibits critical point behavior,
as discussed above. In order to induce the 2-D current-
sheet model into such self-organized critical behavior we
have integrated it numerically in the manner illustrated in
Figure 1.

3.1. Setup

[22] Initially, inflows are imposed at the upper and lower
boundaries of the simulation grid, as indicated in Figure 1
and by equation (C5). The uniform inflow speed and the
density at the upper and lower boundaries are then held
constant in time for the duration of the simulation. The
incoming flows carry magnetic flux in opposing directions
at the upper and lower boundaries. The left boundary is
closed; plasma can flow along this boundary but not
through it. The right boundary is open; plasma can flow
along this boundary and through it in the direction out of the

Figure 1. Simulation configuration for the two-dimen-
sional current-sheet model. See color version of this figure
in the HTML.
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simulation region but not into it. The net effect is to load the
system with plasma that contains opposing magnetic flux so
that the current-sheet strength is increased until the current-
driven instability is excited somewhere on the grid. At that
point, in a dynamic manner that will be discussed below, the
magnetic flux is effectively unloaded from the system by
merging and annihilation along the z = 0 axis (see Figure 1).
Thus the first step toward SOC dynamics, loading and
unloading of an otherwise conserved quantity, is achieved.
The boundary conditions that are imposed to achieve this
behavior are listed in Appendix B.
[23] A force-balanced state (see Appendix C) containing

a magnetic field reversal and the supporting current sheet is
imposed initially. The equilibrium is imposed to achieve a
gentle startup; except for the uniform inflow speed and the
density at the upper and lower boundaries that are estab-
lished in the initial condition, the long-time behavior of the
model is independent of the initial state.

3.2. Long-Time Behavior

[24] The long-time state of the model is characterized by
a complex current distribution that is, nevertheless, close to
the critical current density Jc everywhere in the modeled
plasma. Thus the second step toward SOC dynamics, the
evolution into criticality, may be achieved. The model
evolves toward a state in which the current-driven instabil-
ity is near its instability threshold throughout.
[25] In the long-time state of the model, the nearly

constant current distribution (J = Jc) is produced predom-
inantly by a nearly constant gradient @Bx/@z. Solutions are
limited to those for which Bx is antisymmetric in z. Thus

the field strength at the upper and lower boundaries, as well
as the rate at which magnetic flux in driven into the current
sheet, is ultimately controlled by the value of the critical
current density Jc. If the rate at which magnetic flux is
driven into the current sheet is not too large, then the model
can take on a plasma sheet-like configuration, as illustrated
in Figure 2. The plasma density peaks along z = 0 and
plasmoid-like shapes emerge in the distributions of density
and field lines. As time advances, these plasmoids move
out of the system through the open boundary to the right
and new ones form to take their place. Figure 2 is a frame
from a video animation that is available through an
electronic supplement associated with this paper (see
DensFL_supp1.mpg)1. The formation, propagation, and
exiting of these plasmoid-like structures can be viewed in
this animation.
[26] If the rate at which magnetic flux is driven into the

current sheet is lower than the rate at which it is annihilated,
the necessary equality of the time averages of these two
rates is achieved through the establishment of a loading-
unloading cycle. The annihilation takes place in bursts of
activity (unloading interval) interspersed with quiet inter-
vals during which the current-driven instability is not
excited anywhere in the simulated plasma, the system
reduces to resistive MHD with very low resistivity and
the annihilation rate is effectively zero (loading interval
since the magnetic flux remains inwardly driven at the

Figure 2. Time-asymptotic plasma sheet-like configuration: magnetic field lines superposed on plasma
density. See color version of this figure in the HTML.

1Auxiliary material is available at ftp://ftp.agu.org/apend/ja/
2003JA010036.
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upper and lower boundaries). Figure 3 shows an example of
this cyclical behavior. If the rate at which magnetic flux is
driven into the current sheet is increased, the loading
intervals shorten until the unloading intervals merge.
Uritsky et al. [2001b] have demonstrated similar behavior
in a one-dimensional reduction of this model and they have
shown that strict criticality is lost in that model when the
unloading intervals merge.

4. Unloading Onset

[27] Scale-free avalanching is a defining characteristic of
numerical SOC models. The Polar UVI image analysis due
to Uritsky et al. [2002] indicates that in the plasma sheet
there may be a scale-free avalanching mechanism related to
localized reconnection. The results of Uritsky et al. support
the earlier analysis of GEOTAIL plasma sheet data carried
out by Angelopoulos et al. [1999b] in which in situ evidence
for scale-free avalanching related to localized reconnection
was developed. In this section, we show that the onset of an
unloading interval in the 2-D current-sheet model initiates at
a reconnection site and the evolution of the model thereafter
has the visual appearance of an avalanche of magnetic field
line merging. In the following section, we show that this is,
indeed, the onset of a scale-free avalanching process.

4.1. Instability Waves

[28] Figure 4 shows the resistivity distribution D and
Figure 5 shows the current density shortly after the onset
of an unloading event; these are individual frames from a
pair of video animations contained in the electronic supple-

Figure 3. Loading-unloading cycle: (a) total magnetic
field energy and (b) number of grid sites at which current-
driven instability is excited. See color version of this figure
in the HTML.

Figure 4. Resistivity distributions shortly after the onset of reconnection at an isolated site. A wave of
current-driven instability is spreading away from the reconnection site and a second wave is just
emerging; both leave a trail of resistivity in their wakes. See color version of this figure in the HTML.
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ment associated with this paper. (See D_supp3.mpg and
J_supp2.mpg for resistivity and current densities, respec-
tively.) The current density had reached the critical current
density Jc a short time earlier at the point indicated in the
figure, thereby exciting the current-driven instability at that
point. A wave of high current density (’Jc) can be seen
propagating away from the point of initial instability, with
a second wave just emerging. The white dots superposed
on the resistivity distribution indicate grid positions in the
simulation at which the current-driven instability is pres-
ently excited. It can be seen that the current density in the
propagating wave can be high enough to excite the
current-driven instability within the wave. The excitation
of this waveform is explained by Klimas et al. [2000].
Because the current-driven instability is excited within the
wave, the wave is a source of resistivity. The resistivity
decays exponentially with rate 1/t after the wave has
passed. The electronic supplement animations should be
viewed to see the complex pattern of current and resistiv-
ity densities that form as these waves fill the simulation
grid.
[29] The point of initial instability in this unloading onset

becomes a site of x line reconnection that persists thereafter
in a dynamic fashion. Still figures are not sufficient for
demonstrating this behavior. The third animation in this
group (see FL_supp4.mpg), which shows the evolution of
the magnetic field lines, illustrates the behavior of the
dynamic x line. In addition, it can be seen that the gener-
ation of resistivity in the waves of instability that propagate
away from the reconnection site leads to an expanding

region in which the magnetic field becomes unfrozen; an
expanding cascade of field line merging results. In effect,
the reconnection site broadcasts waves of resistivity that
produce what appears to be an expanding avalanche of field
line merging.

4.2. Discussion

[30] The behavior described in the preceding section is
not typical in MHD simulation codes, even in those in
which spatially localized resistivity is turned on at locations
where the current has exceeded a predetermined critical
value [Sato and Hayashi, 1979; Hoshino, 1991; Raeder et
al., 1996]. The source of this atypical behavior is the
hysteresis that has been introduced into the Q-switch
equation (5) by setting b < 1. Lu [1995] introduced this
feature in a continuum SOC model that is the basis for the
2-D current-sheet model under discussion here as well as for
the related 1-D model that has been investigated earlier
[Klimas et al., 2000; Uritsky et al., 2001a, 2001b]. Lu had
two reasons for the introduction of this feature: (1) he
showed that it is impossible to achieve avalanching in any
continuum (MHD, fluid, etc.) model unless this feature or
some equivalent is included and (2) this particular choice
mimics the behavior of real plasma instabilities in their
nonlinearly saturated states.
4.2.1. Avalanching in Continuum Models
[31] Hysteresis in the local instability is an implicit

feature in any discrete SOC model and it must be included
in continuum models as well. Without this hysteresis, it is
impossible to establish scale-free avalanching. To under-

Figure 5. Current density shortly after the onset of reconnection at an isolated site. A wave of intense
current is spreading away from the reconnection site and a second wave is just emerging; both are
sufficiently strong to excite the current-driven instability. See color version of this figure in the HTML.
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stand this assertion, reconsider the general properties of
systems in SOC that were given above in section 1.
Consider a spatially extended system that is subject to
loading of a conserved quantity somewhere in the system
(at z = ±1 in the current-sheet model) and unloading at a
boundary to the system (the z = 0 axis in the current-sheet
model). Assume the transport of the conserved quantity is
enabled by a local threshold instability that is self-stabiliz-
ing (excitation of the instability drives the system back
toward local stability) and when excited leads to a rapid,
but local, shift of the conserved quantity to neighboring
sites in the system. Suppose this process were to leave the
originally unstable site at the threshold for the local
instability. Then, under continuous loading the system must
eventually reach a marginally stable state in which every
site is at this instability threshold. In that state, loading of
an increment of the conserved quantity anywhere in the
system must lead to an avalanche that propagates all the
way to the unloading boundary; it would be impossible to
develop an internal avalanche. In this case, the dimension
of the system is introduced as a characteristic scale for the
transport process; the transport process is not scale free. In
order for scale-free avalanching to develop, it is necessary
that internal avalanches are possible. Internal avalanches
are possible only if there are sites within the system that
can remain stable even if a neighboring site becomes
unstable. Those sites must have been left below the
threshold for instability the last time they were involved
in the instability process so that they can absorb some
amount of the conserved quantity without exceeding the
threshold. Hysteresis in the Q-switch equation (5) is one
way to obtain this necessary behavior.
[32] It should be noted that the loading-unloading cycle

shown in Figure 3 is a direct consequence of the hysteresis
in the Q switch. In the absence of hysteresis (b = 1), a
marginally stable quasi steady state is established. If this
were the behavior of the plasma sheet in a global magne-
tospheric model, then it would be impossible to simulate the
sequence of substorms [Farrugia et al., 1993; Freeman and
Farrugia, 1999] that are often observed during extended
intervals of relatively steady solar wind conditions contain-
ing a strong southward IMF. After a possible initial sub-
storm following the southward turning, the model would
necessarily evolve into a quasi steady state with continuous
reconnection in the tail. More generally, any loading-
unloading behavior in the model would constitute a driven
response to the solar wind; the model would not contain an
internal loading-unloading response to the solar wind
in contrast to the well-known magnetospheric dynamics
[Bargatze et al., 1985].
4.2.2. Instability Saturation and Persistence
[33] There may be other ways to generate the necessary

behavior discussed in the preceding section, but the
Q-switch hysteresis is attractive because consequently the
evolution of the anomalous resistivity governed by
equation (6) mimics the behavior of real plasma physical
instabilities, i.e., the tendency, following the excitation of an
instability, for the associated wave field to persist unless the
local conditions in the plasma fall below the threshold for
the instability. For an elementary example of this behavior,
consider a simple one-dimensional electrostatic bump-on-
tail instability. A particle beam that leads to a positive slope

on the velocity distribution excites the instability. Conse-
quently, resonant modes in the electrostatic field grow and
then saturate when the bump on the space-averaged distri-
bution is reduced to a plateau and the positive slope is
reduced to zero. At this time, the instability has evolved to
marginal stability at its threshold but the wave field that it
has generated persists. To quench the wave field, it is
necessary, in some way, to reduce the slope on the velocity
distribution below the threshold zero value to any negative
value, and thereby induce Landau damping. More generally,
it is often the case that local instabilities in plasma evolve to
a state of marginal stability at the threshold of the instability
in the modified state of the plasma, modified through the
evolution of the instability. At that time, the wave field that
has been generated by the instability persists, pending
further developments in the local plasma. One of the many
possibilities is a lowering in some way of the state of
the plasma to below the locally modified threshold of
the instability, thereby quenching the wave field. The
evolution of the anomalous resistivity that is generated by
equations (5) and (6) mimics this last possibility.
[34] In the specific case of the cross-field current insta-

bility [Lui et al., 1990, 1991; Lui, 1996], excitation of the
instability leads to heating of the local plasma [Lui et al.,
1993; Yoon and Lui, 1993, 1996] and therefore most likely
to a higher threshold for excitation of the instability in the
modified plasma state. This threshold increase is not in
conflict with the assumption b < 1 in equation (5). By
manually increasing the excitation threshold Jc over the
course of an unloading event to simulate its increase with
temperature, we have verified that the qualitative evolution
of the event is not modified as long as the spread between
excitation and quenching thresholds (b < 1) is maintained.
In particular, the instability waves are not quenched even by
sudden finite upward jumps in Jc. It is not necessary for the
quenching threshold to remain below the original threshold
for excitation. If the excitation threshold evolves upward as
the instability saturates, then the quenching threshold can
evolve upward with it. Although the appropriate tempera-
ture dependence of Jc is not included in the 2-D current-
sheet model at this time, we are confident that when it is
included the behavior discussed in this paper will not be
qualitatively modified.
[35] As noted above, all results discussed in this paper

were obtained with b = 0.9. However, we have found that
the instability waves propagate even with b = 0.98; an
extremely small spread between excitation and quenching
thresholds is sufficient.

5. Avalanche Statistics

[36] To verify the existence of SOC dynamics in the
current-sheet model the first step must be a search for
behavior that is analogous to the scale-free avalanching of
numerical SOC models. A process must be found that leads
to the transport of a conserved quantity through the system
because of the correlated excitation of a local instability,
correlated over spatial and temporal ranges that statistically
show no characteristic scales. The results of the preceding
section suggest that the conserved quantity may be magnetic
flux or energy, which is transported through the model from
the upper and lower boundaries to the z = 0 axis, where it is
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lost to annihilation. The particular transport mode of interest
would be that due to the excitation of the current-driven
instability, which we have shown above is indeed correlated
spatially and temporally through the propagation of the
instability waves.

5.1. Diffusive Poynting Flux

[37] Thus (written here in terms of dimensional quantities
for clarity) we have studied the transport of the predomi-
nantly magnetic, electromagnetic energy density

u ¼ 1

8p
E2 þ B2
	 


ð7Þ

via the Poynting flux

S ¼ c

4p
ðnJ� BÞ þ 1

4p
B2V?; ð8Þ

in which h is the resistivity. Since it is the first term in this
equation that appears to satisfy the requirements discussed
above, we have focused our attention on it. We have further
restricted our attention to simulations containing a loading-
unloading cycle, as discussed above. In such simulations, we
have found that during the unloading intervals the diffusive
Poynting flux represented by the first term of equation (8)
dominates over the convective Poynting flux represented by
the second term; both terms are negligibly small during the
quiet loading intervals. In the following, we examine the
statistical properties of the diffusive transport of electro-
magnetic energy density in a portion of an unloading event
during which the unloading rate is approximately stationary.
Figure 6 shows the number of unstable grid sites as a
function of time over the course of the unloading event as
well as the interval within the unloading event that we have
used for this statistical analysis. The rate at which magnetic
energy is lost through merging has been found approxi-
mately proportional to the number of unstable grid sites.

5.2. Analysis Method

[38] Figure 7 shows the distribution of diffusive Poynting
flux magnitude in the simulated plasma at a point in the
middle of the statistical analysis interval under consider-
ation. The diffusive flux is dominated strongly by its
z component, which is directed toward the z = 0 axis from
above and below. The diffusive Poynting flux predominantly
carries field energy from near the upper and lower bound-
aries to a region near the z = 0 axis where it is converted to

Figure 6. Number of grid sites at which the current-driven
instability is excited over the course of a single unloading
event. The interval within the event for which avalanche
distributions have been constructed is indicated. See color
version of this figure in the HTML.

Figure 7. Sample distribution of diffusive Poynting flux magnitude. The x component of this flux is
approximately an order of magnitude smaller than the z component, which is directed toward the z = 0
axis from above and below. See color version of this figure in the HTML.

A02218 KLIMAS ET AL.: DRIVEN CURRENT SHEET MODEL

9 of 14

A02218



plasma thermal and kinetic energy. Only a small portion of
the field energy is lost through the open boundary.
[39] We have studied a sequence of 1800 images uni-

formly spanning the analysis interval indicated in Figure 6.
In each of the images, spatial regions were identified, within
which the diffusive Poynting flux magnitude was found to
exceed a threshold value at contiguous grid sites. These
high-transport regions will be called H-T regions in the
following. The analysis was carried out three times for three
threshold values, 0.001, 0.0015, and 0.002. (See the color
bar in (Figure 7) for reference.) Sequential images were
examined to find H-T regions that shared common grid
sites; those that did were treated as snapshots of the same
H-T region as it evolves in time. H-T regions that were not
found in two or more consecutive images were ignored. H-T
regions that were found to divide into two or more segments
were treated, nevertheless, as one region. If H-T regions
were found to merge, they were still considered separate
regions, with the common merged region treated as the
continuation of the region that started earlier. In this way,
the H-T regions were examined following the established
rules for analyzing the statistical properties of avalanches in
running cellular automaton SOC models [Becker et al.,
1995]. Further, this analysis follows exactly that of the
Polar UVI image data carried out by Uritsky et al. [2002].
[40] The final video animation contained in the electronic

supplement associated with this paper shows the evolution
of the H-T regions for a portion of the analysis interval (See
DiffTran_supp5.mpg). The initial frame of this animation
shows the same distribution as that shown in Figure 7
except that the threshold value 0.001 has been applied.
Only regions of diffusive Poynting flux at or above this
threshold appear in the video; these are the evolving H-T
regions described in the preceding paragraph.

5.3. Avalanche Distributions

[41] Numerical SOC models exhibit scale-free distribu-
tions of certain avalanche measures. To construct these

distributions, individual avalanches are followed from be-
ginning to end and properties such as their duration, their
total area, some measure of the size (for example, in a
sandpile model, the number of grains involved in the
avalanche), and others are tabulated. Occurrence distribu-
tions are constructed and usually normalized to produce
probability distributions for the values of these tabulated
properties. For models in SOC, all of these distributions
have power law forms containing no characteristic scales.
[42] Analogously, we have followed each of the H-T

regions from beginning to end and have recorded their
duration, integrated (in time) area, and integrated (space
and time) diffusive Poynting flux magnitude. From these
data, we have constructed probability distributions for
duration, size (integrated area), and energy (integrated
Poynting flux magnitude).
[43] Figure 8 shows the probability distributions of the H-T

region durations for the three threshold values defined above.
Except for the loss of longer duration events for the higher
thresholds, the results are relatively insensitive to the thresh-
old value over the range of values shown. A line with slope
�2 has been drawn on the figure. The distributions are
consistent with scale-free power law distributions with slope
close to �2 over slightly less than three decades in duration
time.
[44] Figure 9 shows the probability distributions of the

H-T region sizes and Figure 10 shows the distributions of
energies, both for the three threshold values. Again, the
distributions are insensitive to changes of the threshold and,
in both instances, are consistent with scale-free power law
distributions with slope close to �1.5 over almost five
decades in size or energy.

5.4. Discussion

[45] At minimum, the probability distributions shown in
Figures 8–10 show that the transport of magnetic field
energy into the central annihilation region of the current
sheet is carried by an avalanching process that is scale free

Figure 8. Duration probability distributions of high-
transport (H-T) regions in the evolving Poynting flux
magnitude over the course of the analysis interval indicated
in Figure 6. The H-T regions have been constructed using
three threshold values, as indicated. See color version of this
figure in the HTML.

Figure 9. Size probability distribution of high-transport
(H-T) regions in the evolving Poynting flux magnitude over
the course of the analysis interval indicated in Figure 6. The
H-T regions have been constructed using three threshold
values, as indicated. See color version of this figure in the
HTML.
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over an exceptionally large range of scales. The conclusions
that we may draw from this result depend a great deal on the
setting in which the avalanching process operates.
[46] The model output that was used to construct the

avalanche distributions was taken from a portion of an un-
loading event that occurred in what we have called the long-
time state of the model. As discussed above, this long-time
state is characterized by a complex current distribution that is,
nevertheless, close to the critical current density Jc every-
where in the modeled plasma. After being disturbed by an
unloading event, the model always evolves back toward this
state in which the current-driven instability is near its insta-
bility threshold throughout; it self-organizes into a state that is
consistent with it being in the neighborhood of criticality.
[47] The current-sheet model governs the transport of a

conserved quantity, the predominantly magnetic electro-
magnetic energy. We have shown that the transport of this
energy is subject to the excitation of a local instability, the
current-driven instability, which through the propagation of
the instability waves is correlated spatially and temporally
over extended ranges. From the avalanche distributions, we
have seen that statistically these correlations are distributed
with no characteristic scales over large ranges of scales.
[48] Given (1) the insensitivity of the avalanche distribu-

tions to the threshold values used in their construction,
(2) the large ranges of scales over which the distributions
are scale free, (3) the fact that at least three important
quantities, duration, size, and energy, show these scale-free
distributions, and (4) the appropriate setting within which
the avalanching process operates, we conclude that the
scale-free avalanche distributions provide strong evidence
that the current-sheet model is in SOC when it is in the
long-time state described above.

6. Summary

[49] Through their analysis of Polar UVI image data,
Uritsky et al. [2002] have produced strong evidence of

SOC dynamics in Earth’s magnetosphere. The most natural
explanation for their results is the existence of a scale-free
avalanching process associated with reconnection in the
plasma sheet. In fact, there appears to be no other available
explanation at present. If this explanation were accepted,
however, a fundamental reexamination of the substorm
phenomenon in the plasma sheet would become necessary.
Substorms would necessarily be viewed as extreme system-
wide events in a distribution of events that stretches from
global scales down to scales comparable to the upper limit
that has been placed on individual localized reconnection
events; i.e., �1 RE. (Even smaller scales in the plasma sheet
are implied by the Uritsky et al. results.) Substorm onset
would have to be viewed as an avalanche of localized
instabilities that manage, somehow, to evolve in a coordi-
nated fashion. Such a major paradigm shift should be
approached with some caution. While the Uritsky et al.
evidence is strong, the UVI image results provide only a
remote measure of the plasma sheet dynamics. In situ
plasma sheet observations must be the next step.
[50] It would be necessary to study the multispatiotem-

poral-scale behavior of the plasma sheet to confirm its SOC
dynamics. Generally, with some dependence on phase in the
substorm cycle, long-ranged correlated behavior should be
expected. The multispacecraft Cluster and MMS missions
would make such a study possible. However, SOC dynam-
ics in a plasma physical setting is largely unexplored and
consequently it is impossible at this time to suggest specific
goals for such a study.
[51] Therefore we have embarked on a study of SOC in

models of the magnetic field reversal and driven reconnec-
tion of the plasma sheet. We have incorporated strongly
coupled MHD and kinetic components in the models so that
multiscale dynamics over the extremely broad range shown
by Uritsky et al. [2002] may result. For the kinetic compo-
nent, anomalous resistivity due to a current-driven instabil-
ity in the plasma is incorporated in a manner suggested by
Lu [1995]. We have shown earlier that a one-dimensional
model of this kind does evolve into SOC under steady
driving. Here we have discussed a two-dimensional model
and have presented the first evidence that it too evolves into
SOC when driven continuously.
[52] Lu [1995] has shown that it is impossible to produce

scale-free avalanching in any driven continuum model
unless the local threshold instability that is involved in the
transport of the conserved quantity through the system is
hysteretic. The threshold for quenching the instability must
be at least slightly below its threshold for excitation. A
macroscopic consequence of this property is a loading-
unloading cycle. Simply put, cumulative activity at the
kinetic level persists long enough to drive the macrosystem
below its threshold for unloading so that subsequently it
must be loaded for some time before it can reach that
threshold again. Lu has shown, and we have confirmed,
that should the local instability have no hysteresis, then the
macrosystem must evolve to a steady marginally stable state
under continuous loading; a loading-unloading cycle is then
impossible. As an example, we have discussed a single
kinetic instability, the bump-on-tail instability, and have
shown that it does exhibit this hysteretic property. We have
further suggested, following Lu, that this is a common
property of other kinetic instabilities. We will report in the

Figure 10. Energy probability distribution of high-trans-
port (H-T) regions in the evolving Poynting flux magnitude
over the course of the analysis interval indicated in Figure 6.
The H-T regions have been constructed using three
threshold values, as indicated. See color version of this
figure in the HTML.
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future on a simulation study of the relevant cross-field
current instability [Lui, 2002] in which we will verify this
property of the instability.
[53] We have shown that an interesting consequence of

hysteresis in the current-driven instability is the possible
propagation of current sheets whose strengths are sufficient
to excite the instability. We have found that unloading
events in the model evolution all start at the onset of local
reconnection at a site that then becomes a source for many
of these propagating current sheets. As these current sheets
propagate away from the reconnection site, since they are
intense enough to excite the current-driven instability, they
leave trails of anomalous resistivity in their wakes. Thus the
original isolated reconnection site becomes the origin of an
expanding region of field line merging as this resistivity
spreads. We suggest this behavior as a possible mechanism
for localized reconnection-associated avalanching in the
plasma sheet. The expanding current-sheet waves can
provide the necessary long-ranged correlated behavior in
the plasma and, as we have shown, the expanding cascade
of field line merging does lead to scale-free avalanching.
[54] We have examined the transport of (predominantly)

magnetic energy from the exterior boundaries of the simu-
lation grid, where it is driven into the simulated plasma, to
the interior neutral sheet where it is annihilated. There are
two contributions to this transport, the motion of the frozen-
in field lines with the plasma and the diffusive transport
enabled by the excitation of the current-driven instability.
The second of these contributions is dominant during the
modeled unloading events and it is most analogous to the
transport mechanisms found in discrete SOC models. Thus
we have focused our attention on the diffusive transport of
magnetic energy through the plasma.
[55] Using methods that have been developed for analy-

ses of running-sandpile models [Becker et al., 1995], we
have studied some statistical properties of the magnetic
energy diffusive transport during an unloading event. Three
threshold values were set and for each value contiguous
spatial regions where the diffusive Poynting flux rose above
the threshold were identified and followed in time. The
duration of each of these regions, their integrated area, and
the magnetic energy that they transported were tabulated.
Probability distributions for each of these properties were
constructed for each of the threshold values. We have
shown that each of these avalanche distributions is of a
scale-free power law form and that the distributions are
stable under the changes in threshold value that we have
applied. The distributions are remarkably similar to the
distributions that Uritsky et al. [2002] found for duration,
integrated size, and integrated energy of auroral emission
regions in their analysis of Polar UVI image data. We have
no explanation for this interesting result at present but, of
course, we will investigate it in the future. Given (1) the
insensitivity of the avalanche distributions to the threshold
values used in their construction, (2) the large ranges of
scales over which the distributions are scale free, (3) the fact
that at least three important quantities, duration, size, and
energy, show these scale-free distributions, and (4) the
appropriate setting within which the avalanching process
operates, we conclude that the scale-free avalanche distri-
butions provide strong evidence that the 2-D current-sheet
model can evolve into SOC when driven steadily.

[56] On the basis of this initial success, we are proceeding
ahead with an analysis of the susceptibility [Vespignani and
Zapperi, 1998] of the 2-D current sheet model to provide
conclusive evidence that it can evolve into SOC. Concur-
rently, we will generalize the model to approximate the
plasma sheet more accurately. The principal area of concern
is the parametric dependence of the cross-field current
instability threshold, which has not been included properly
at present. When a more realistic representation of the
effects of this instability is included, it will become possible
to restrict the parameters of the model to values that
represent the plasma sheet better. A further generalization
of the model to three dimensions is anticipated. As the
model is improved, we expect that it will suggest multi-
spacecraft in situ studies of the plasma sheet to test our
assertion that the Uritsky et al. [2002] results imply SOC
dynamics in the plasma sheet.

Appendix A

A1. Dimensionless Variables

[57] The current-sheet model is simulated on the two-
dimensional (x, z) grid, as indicated in Figure 1. Lengths are
measured in units of the half-thickness Lz of the current
sheet in the z direction. In the following, dimensionless
variables are indicated by starred symbols

z* ¼ z

Lz
; ðA1Þ

x* ¼ x

Lz
¼ e�1 x

Lx
; e ¼ Lz=Lxð Þ; ðA2Þ

and

B0 � Bx x ¼ Lx; kz ¼ 1ð Þ; ðA3Þ

in which k is a parameter that is introduced to allow for
flexibility in the initial state of the simulation (see equations
(C1) and (C2)).

B* ¼ B

B0

¼ 1ffiffiffiffiffiffi
8p

p r*� A*; ðA4Þ

A* ¼
ffiffiffiffiffiffi
8p

p

LzB0

A; ðA5Þ

r* ¼ r
r0

; r0 ¼ rðkz ¼ 1Þ; ðA6Þ

V* ¼ V

VA

; VA ¼ B0ffiffiffiffiffiffiffiffiffiffi
8pr0

p ; ðA7Þ

t* ¼ VA

Lz

� �
t; ðA8Þ

D* ¼ D

LzVA

; D ¼ c2

4p
h; ðA9Þ
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and

P* ¼ P

B2
0=8p

�  : ðA10Þ

A2. Parameters

[58] The parameters that have been used to obtain the
solutions of the current-sheet model discussed in this paper
are given by e = Lz/Lx = 0.1, g = 5/3, k = 0.3, x0 = 50.0 (see
equations (C1) and (C2)), Vb = 0.001 (see equation (C5)),
Jc = 0.45, P0 = 0.1, t = 1.0, b = 0.9, Dmin = 10�6, Dmax =
4.0, grid spacing �x = 0.025, �z = 0.005, and integration
time step �t = 0.00025.

Appendix B: Boundary Conditions

z = 0

@Aðx; 0Þ=@z ¼ 0

@Vxðx; 0Þ=@z ¼ 0

Vz x;��zð Þ ¼ �Vz x;�zð Þ

@rðx; 0Þ=@z ¼ 0

@Pðx; 0Þ=@z ¼ 0

ðB1Þ

z = 1

@2Aðx; 1Þ=@z2 ¼ 0

@Vxðx; 1Þ=@z ¼ 0

Vzðx; bndryÞ ¼ initial condition

rðx; bndryÞ ¼ initial condition

@Pðx; 1Þ=@z ¼ 0

ðB2Þ

x = 0

@2Að0; zÞ=@x2 ¼ 0

@Vxð0; zÞ=@x ¼ 0

@Vzð0; zÞ=@x ¼ 0

@2rð0; zÞ=@x2 ¼ 0

@2Pð0; zÞ=@x2 ¼ 0

ðB3Þ

but Vx (0, z)  0.
x = 1/e

@Að1=e; zÞ=@x ¼ 0

Vx 1=eþ�x; zð Þ ¼ �Vx 1=e��x; zð Þ

@Vzð1=e; zÞ=@x ¼ 0

@rð1=e; zÞ=@x ¼ 0

@Pð1=e; zÞ=@x ¼ 0:

ðB4Þ

In addition, weak diffusive smoothing has been applied in a
thin layer at the open boundary in order to prevent
excitation of instability waves due to slight irregularities
at the boundary.

Appendix C: Initial Conditions

Aðx; z; t ¼ 0Þ ¼
ffiffiffiffiffiffi
8p

p 2

kp

� �
sin

p
2

� � e xþ x0ð Þ
1þ ex0

� �
cos

kpz
2

� �
ðC1Þ

Pðx; z; t ¼ 0Þ ¼ P0 þ 1þ 1

k

� �2 e
1þ ex0

� �2
" #

� sin2 p
2

� � e xþ x0ð Þ
1þ ex0

� �
cos2

kpz
2

� �
ðC2Þ

rðx; z; t ¼ 0Þ ¼ Pðx; z; t ¼ 0Þ
P0

� �1=g

ðC3Þ

Vxðx; z; t ¼ 0Þ ¼ 0 ðC4Þ

Vzðx; z; t ¼ 0Þ ¼ �Vb

1� cosðpz=2Þ
sinðpz=2Þ

� �
: ðC5Þ
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